336 research outputs found

    Immediate performance of self-etching versus system adhesives with multiple light-activated restoratives

    Get PDF
    Objectives: The purpose of this study was to evaluate the performance of both single and double applications of (Adper Prompt L-Pop) self-etching dental adhesive, when used with three classes of light-activated restorative materials, in comparison to the performance of each restorative system adhesive. Evaluation parameters to be considered for the adhesive systems were (a) immediate marginal adaptation (or gap formation) in tooth cavities, (b) free setting shrinkage-strain determined by the immediate marginal gap-width in a non-bonding Teflon cavity, and (c) their immediate shear bond-strengths to enamel and to dentin. Methods: The maximum marginal gap-width and the opposing-width (if any) in the tooth cavities and in the Teflon cavities were measured immediately (3 min) after light-activation. The shear bond-strengths to enamel and to dentin were also measured at 3 min. Results: For light-activated restorative materials during early setting (&#60;3 min), application of Adper Prompt L-Pop exhibited generally superior marginal adaptation to most system adhesives. But there was no additional benefit from double application. The marginal-gaps in tooth cavities and the marginal-gaps in Teflon cavities were highly correlated (r=0.86–0.89, p&#60;0.02–0.01). For enamel and dentin shear bond-strengths, there were no significant differences between single and double applications, for all materials tested except Toughwell and Z 250 with enamel. Significance: Single application of a self-etch adhesive was a feasible and beneficial alternative to system adhesives for several classes of restorative. Marginal gap-widths in tooth cavities correlated more strongly with free shrinkage-strain magnitudes than with bond-strengths to tooth structure.</p

    Interaction of rat alveolar macrophages with dental composite dust

    Get PDF
    Background: Dental composites have become the standard filling material to restore teeth, but during the placement of these restorations, high amounts of respirable composite dust (<5 mu m) including many nano-sized particles may be released in the breathing zone of the patient and dental operator. Here we tested the respirable fraction of several composite particles for their cytotoxic effect using an alveolar macrophage model system. Methods: Composite dust was generated following a clinical protocol, and the dust particles were collected under sterile circumstances. Dust was dispersed in fluid, and 5-mu m-filtered to enrich the respirable fractions. Quartz DQ12 and corundum were used as positive and negative control, respectively. Four concentrations (22.5 mu g/ml, 45 mu g/ml, 90 mu g/ml and 180 mu g/ml) were applied to NR8383 alveolar macrophages. Light and electron microscopy were used for subcellular localization of particles. Culture supernatants were tested for release of lactate dehydrogenase, glucuronidase, TNF-alpha, and H2O2. Results: Characterization of the suspended particles revealed numerous nano-sized particles but also many high volume particles, most of which could be removed by filtering. Even at the highest concentration (180 mu g/ml), cells completely cleared settled particles from the bottom of the culture vessel. Accordingly, a mixture of nano- and micron-scaled particles was observed inside cells where they were confined to phagolysosomes. The filtered particle fractions elicited largely uniform dose-dependent responses, which were elevated compared to the control only at the highest concentration, which equaled a mean cellular dose of 120 pg/cell. A low inflammatory potential was identified due to dose-dependent release of H2O2 and TNF-alpha. However, compared to the positive control, the released levels of H2O2 and TNF-alpha were still moderate, but their release profiles depended on the type of composite. Conclusions: Alveolar macrophages are able to phagocytize respirable composite dust particle inclusive nanoparticles. Since NR8383 cells tolerate a comparatively high cell burden (60 pg/cell) of each of the five materials with minimal signs of cytotoxicity or inflammation, the toxic potential of respirable composite dust seems to be low. These results are reassuring for dental personnel, but more research is needed to characterize the actual exposure and uptake especially of the pure nano fraction

    Interaction of rat alveolar macrophages with dental composite dust

    Get PDF
    Background: Dental composites have become the standard filling material to restore teeth, but during the placement of these restorations, high amounts of respirable composite dust (<5 mu m) including many nano-sized particles may be released in the breathing zone of the patient and dental operator. Here we tested the respirable fraction of several composite particles for their cytotoxic effect using an alveolar macrophage model system. Methods: Composite dust was generated following a clinical protocol, and the dust particles were collected under sterile circumstances. Dust was dispersed in fluid, and 5-mu m-filtered to enrich the respirable fractions. Quartz DQ12 and corundum were used as positive and negative control, respectively. Four concentrations (22.5 mu g/ml, 45 mu g/ml, 90 mu g/ml and 180 mu g/ml) were applied to NR8383 alveolar macrophages. Light and electron microscopy were used for subcellular localization of particles. Culture supernatants were tested for release of lactate dehydrogenase, glucuronidase, TNF-alpha, and H2O2. Results: Characterization of the suspended particles revealed numerous nano-sized particles but also many high volume particles, most of which could be removed by filtering. Even at the highest concentration (180 mu g/ml), cells completely cleared settled particles from the bottom of the culture vessel. Accordingly, a mixture of nano- and micron-scaled particles was observed inside cells where they were confined to phagolysosomes. The filtered particle fractions elicited largely uniform dose-dependent responses, which were elevated compared to the control only at the highest concentration, which equaled a mean cellular dose of 120 pg/cell. A low inflammatory potential was identified due to dose-dependent release of H2O2 and TNF-alpha. However, compared to the positive control, the released levels of H2O2 and TNF-alpha were still moderate, but their release profiles depended on the type of composite. Conclusions: Alveolar macrophages are able to phagocytize respirable composite dust particle inclusive nanoparticles. Since NR8383 cells tolerate a comparatively high cell burden (60 pg/cell) of each of the five materials with minimal signs of cytotoxicity or inflammation, the toxic potential of respirable composite dust seems to be low. These results are reassuring for dental personnel, but more research is needed to characterize the actual exposure and uptake especially of the pure nano fraction

    Ecological Indicator Values for Europe (EIVE) 1.0

    Get PDF
    Aims: To develop a consistent ecological indicator value system for Europe for five of the main plant niche dimensions: soil moisture (M), soil nitrogen (N), soil reaction (R), light (L) and temperature (T). Study area: Europe (and closely adjacent regions). Methods: We identified 31 indicator value systems for vascular plants in Europe that contained assessments on at least one of the five aforementioned niche dimensions. We rescaled the indicator values of each dimension to a continuous scale, in which 0 represents the minimum and 10 the maximum value present in Europe. Taxon names were harmonised to the Euro+Med Plantbase. For each of the five dimensions, we calculated European values for niche position and niche width by combining the values from the individual EIV systems. Using T values as an example, we externally validated our European indicator values against the median of bioclimatic conditions for global occurrence data of the taxa. Results: In total, we derived European indicator values of niche position and niche width for 14,835 taxa (14,714 for M, 13,748 for N, 14,254 for R, 14,054 for L, 14,496 for T). Relating the obtained values for temperature niche position to the bioclimatic data of species yielded a higher correlation than any of the original EIV systems (r = 0.859). The database: The newly developed Ecological Indicator Values for Europe (EIVE) 1.0, together with all source systems, is available in a flexible, harmonised open access database. Conclusions: EIVE is the most comprehensive ecological indicator value system for European vascular plants to date. The uniform interval scales for niche position and niche width provide new possibilities for ecological and macroecological analyses of vegetation patterns. The developed workflow and documentation will facilitate the future release of updated and expanded versions of EIVE, which may for example include the addition of further taxonomic groups, additional niche dimensions, external validation or regionalisation

    GrassPlot v. 2.00 – first update on the database of multi-scale plant diversity in Palaearctic grasslands

    Get PDF
    Abstract: GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). Following a previous Long Database Report (Dengler et al. 2018, Phyto- coenologia 48, 331–347), we provide here the first update on content and functionality of GrassPlot. The current version (GrassPlot v. 2.00) contains a total of 190,673 plots of different grain sizes across 28,171 independent plots, with 4,654 nested-plot series including at least four grain sizes. The database has improved its content as well as its functionality, including addition and harmonization of header data (land use, information on nestedness, structure and ecology) and preparation of species composition data. Currently, GrassPlot data are intensively used for broad-scale analyses of different aspects of alpha and beta diversity in grassland ecosystems

    Three-year randomised clinical trial to evaluate the clinical performance, quantitative and qualitative wear patterns of hybrid composite restorations

    Get PDF
    The aim of the study was to compare the clinical performance, quantitative and qualitative wear patterns of conventional hybrid (Tetric Ceram), micro-filled hybrid (Gradia Direct Posterior) and nano-hybrid (Tetric EvoCeram, TEC) posterior composite restorations in a 3-year randomised clinical trial. Sixteen Tetric Ceram, 17 TEC and 16 Gradia Direct Posterior restorations were placed in human molars and evaluated at baseline, 6, 12, 24 and 36 months of clinical service according to US Public Health Service criteria. The gypsum replicas at each recall were used for 3D laser scanning to quantify wear, and the epoxy resin replicas were observed under scanning electron microscope to study the qualitative wear patterns. After 3 years of clinical service, the three hybrid restorative materials performed clinically well in posterior cavities. Within the observation period, the nano-hybrid and micro-hybrid restorations evolved better in polishability with improved surface gloss retention than the conventional hybrid counterpart. The three hybrid composites showed enamel-like vertical wear and cavity-size dependant volume loss magnitude. Qualitatively, while the micro-filled and nano-hybrid composite restorations exhibited signs of fatigue similar to the conventional hybrid composite restorations at heavy occlusal contact area, their light occlusal contact areas showed less surface pitting after 3 years of clinical service

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    corecore